Math 206B Lecture 22 Notes

Daniel Raban

March 1, 2019

1 Littlewood-Richardson Coefficients

1.1 Multiplying symmetric functions

Recall

$$s_{\lambda} = \sum_{A \in \text{SSYT}(\lambda)} x^{A}, \qquad x^{A} = x_{1}^{\#1\text{s in } A} x_{2}^{\#2\text{s in } A} \cdots$$

We can multiply many of the different bases of Λ :

$$e_{\lambda}e_{\mu} = e_{\lambda\cup\mu},$$
$$h_{\lambda}h_{\mu} = h_{\lambda\cup\mu},$$
$$p_{\lambda}p_{\mu} = p_{\lambda\cup\mu}.$$

And multiplying $m_{\lambda}m_{\mu}$ is straightforward. What about multiplying Schur functions? Let $|\mu| + |\nu| = 1$. Then

$$s_{\mu}s_{\nu} = \sum_{|\lambda|=n} c_{\mu,\nu}^{\lambda}s_{\lambda}$$

What are the coefficients $c_{\mu,\nu}^{\lambda}$?

Proposition 1.1. $c_{\mu,\nu}^{\lambda} \in \mathbb{N}$.

Proof. Let S^{ν}, S^{λ} be irreducible representations. Then $s_{\mu}s_{\nu}$ corresponds to $\operatorname{ind}_{S_{k}\times S_{n-K}^{S_{n}}}S^{\mu}\otimes S^{\nu}$. So $c_{\mu,\nu}^{\lambda}$ is the inner product of S^{λ} with this induced character. This is the dimension of the irreducible representation S^{λ} in this representation.

Theorem 1.1. $c_{\mu,\nu}^{\lambda} = \# \operatorname{LR}(\lambda/\mu,\nu)$, the number of a certain type of semistandard Young tableaux.

This is difficult to prove.¹

¹It is so difficult that Stanley did not actually prove it in his textbook.

1.2 Multiplying Schur functions

Let $\mu \circ \nu$ be the skew shape

Then

$$s_{\mu}s_{\nu} = s_{\mu\circ\nu} = \sum_{A\in SSYT} x^A = \sum_{|\lambda|=n} c^{\lambda}_{\mu,\nu}s_{\lambda}$$

How do we determine a tableau with shape $\mu \circ \nu$? Take the skew-shape and reduce it using Jeu-de-taquin.

Example 1.1. We reduce the skew tableau

to the tableau

So $c_{\mu,\nu}^{\lambda}$ is the multiplicity of any $P \in \text{SSYT}(\lambda)$ as a jeu-de-taquin of $B \circ C$, where $B \in \text{SSYT}(\mu)$ and $C \in \text{SSYT}(\nu)$.

Corollary 1.1. $c_{\mu,\nu}^{\lambda} \in \#P$.

There is a polynomial algorithm, jeu-de-taquin, for determining if B and C produce the correct tableau. But this is a very messy combinatorial interpretation. There is a better interpretation.

1.3 Ballot sequences

Definition 1.1. (a_1, \ldots, a_n) is a **ballot sequence** if for all $k \in [n]$, the number of *is* among a_1, \ldots, a_k is greater than the number of (i + 1)s among a_1, \ldots, a_k for all *i*.

Example 1.2. The sequence (1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3) is a ballot sequence.

Cat(n) is the number of ballot sequences with n 1s and n 2s. Young tableau are basically the same as ballot sequences; if the number i in our tableau is in row j, we can make the i-th term in the sequence j.

When we have a pair of tablueux that we arrange into a skew shape, form a sequence by listing the numbers in each row from left to right, going down in rows.

Example 1.3.

gives us the sequence (1, 1, 3, 3, 1, 3, 3).

Theorem 1.2. $c_{\mu,\nu}^{\lambda} = \# \operatorname{SSYT}(\nu, \lambda \setminus \mu)$ such that the sequence obtained from $B \circ C$ is a ballot sequence, where $B \in \operatorname{SSYT}(\mu)$ and $C \in \operatorname{SSYT}(\nu)$.

Next time we will discuss the following.

Corollary 1.2. $c_{\mu,\nu}^{\lambda}$ is the number of integer points in a polytope defined by the vectors λ, μ, ν .

Theorem 1.3. It can be determined in polynomial time whether $c_{\mu,\nu}^{\lambda} = 0$.